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Limit cycle solution
Canonical model B
A class of systems with conservative phase separation mechanisms as well as
chemical reactions. Examples include
» Self-propelled bacteria with birth-death dynamics [1,2]
» Biomolecular condensates [3]
» Chemically active bi-polymer blends [4]

When reaction is slow compared to diffusion,

Canonical model: Model B and Model A with different chemical potentials.
Scalar field ¢: rescaled density or composition variable.
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Figure: The same limit cycle projected onto
Figure: Space-time plot of a limit cycle (81, ¢) where ¢(t) = [ dzg(z,t). The slow
Conservative where a dense droplet appears and manifold is the steady state solution of the
Non-conservative disappears over time. conservative part of the dynamics given ¢.

Conservative dynamics:
Double-well free energy with two
stable binodals
Non-conservative dynamics:
Cubic free energy with one stable » Droplet state: enough decrease in the droplet to offset the production in
fixed point at target density o the dilute region, i.e. effective target density close to the binodal
Absorbing state at ¢ = ¢, but far » Uniform state: ¢ within the spinodals so the uniform state becomes
away unstable before ¢, is reached.

Hysteresis structure essential for limit cycles to occur

Conditions for the cycles to occur

Free energy

Droplet splitting
Steady state solution: arrested phase separation I
— Spherical droplets are sometimes unstable against shape perturbations
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Close to the pattern formation threshold

-14 % simulations
Let A = &%(dwu) ™t — 1. e it grdien =070
For small A, growth of the most
unstable mode ¢, saturated by the
non-linear terms. g » We constructed a canonical model for conservative phase separation and
chemical reactions.

Conclusions and perspectives

Conclusions
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o(z) ~ AL/ cos(qex) 8] » The canonical model captures the phenomenologies of the more
Tz e b 36 4 complicated models [1-4], including limit cycles, arrested phase
e separation and droplet splitting.
Arrested Ostwald ripening of droplets Perspectives
Balance flux across the boundary of a 001 . ‘ » The limit cycle solution clearly breaks the time reversal symmetry, but it

is hard to tell what is non-equilibrium about the steady state patterns —
need to look at fluctuations
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