

Non-equilibrium phase separation with chemical reactions

Yuting Li, Michael E. Cates Email: y1511@cam.ac.uk

DAMTP, Centre for Mathematical Sciences, University of Cambridge

Canonical model

A class of systems with conservative phase separation mechanisms as well as chemical reactions. Examples include

- ► Self-propelled bacteria with birth-death dynamics [1,2]
- Biomolecular condensates [3]
- Chemically active bi-polymer blends [4]

Canonical model: Model B and Model A with different chemical potentials. Scalar field ϕ : rescaled density or composition variable.

$$\begin{array}{l} \partial_t \phi = M_1 \boldsymbol{\nabla}^2 \mu_1 - M_2 \mu_2 + \Lambda \\ \mu_1 = -\alpha \phi + \beta \phi^3 - \kappa \boldsymbol{\nabla}^2 \phi \\ \mu_2 = u(\phi - \phi_{\rm a})(\phi - \phi_{\rm t}) \\ \langle \Lambda(\boldsymbol{x}, t) \Lambda(\boldsymbol{y}, s) \rangle = 2\epsilon \left[-M_1 \boldsymbol{\nabla}_{\boldsymbol{x}} \boldsymbol{\nabla}_{\boldsymbol{y}} + M_2 \right] \delta^3(\boldsymbol{x} - \boldsymbol{y}) \delta(t - s) \end{array}$$

Conservative dynamics:

Double-well free energy with two stable binodals **Non-conservative dynamics:** Cubic free energy with one stable fixed point at target density ϕ_t Absorbing state at $\phi = \phi_a$ but far away

Steady state solution: arrested phase separation

 H_{i}

Linear stability analysis

Expand $\phi(\boldsymbol{x}) = \phi_{t} + \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \delta \phi(\boldsymbol{q}) e^{-i\boldsymbol{q}\cdot\boldsymbol{x}}$,

$$\partial_t \phi_q = \left[\left(\frac{\alpha^2}{4\kappa} - u \right) - \kappa (q^2 - q_c^2)^2 \right]$$

where $\tilde{\alpha} = \alpha - 3\beta \phi_t^2$, and $q_c = \sqrt{\tilde{\alpha}/2\kappa}$. \rightarrow Uniform state unstable for $\tilde{\alpha} > \sqrt{4u\kappa}$.

Close to the pattern formation threshold

 ϕ_q

Arrested Ostwald ripening of droplets

 $\phi(x) \sim \Delta^{1/2} \cos(q_c x)$

Balance flux across the boundary of a droplet in a bath to obtain growth rate of the radius

- Unstable fixed point: the usual Ostwald ripening radius - smaller droplets shrink
- Stable fixed point: stable radius of a droplet

Limit cycle solution

When reaction is slow compared to diffusion,

 $(\partial_t \bar{\phi}, \bar{\phi})$ where $\bar{\phi}(t) = \int dx \phi(x, t)$. The slow

manifold is the steady state solution of the

conservative part of the dynamics given $\overline{\phi}$.

Figure: Space-time plot of a limit cycle where a dense droplet appears and disappears over time.

Conditions for the cycles to occur

- ► Droplet state: enough decrease in the droplet to offset the production in the dilute region, i.e. effective target density close to the binodal
- Uniform state: ϕ_t within the spinodals so the uniform state becomes unstable before ϕ_t is reached.

Hysteresis structure essential for limit cycles to occur

Droplet splitting

Spherical droplets are sometimes unstable against shape perturbations

► Ostwald ripening type calculation for perturbations around a spherical droplet $R(\theta) = \bar{R} + \sum \delta R_l \cos(l\theta)$

Linear stability analysis gives

 $\partial_t \delta R_l = q_l \left(\bar{R} \right) \delta R_l$

Conclusions and perspectives

Conclusions

- ► We constructed a canonical model for conservative phase separation and chemical reactions.
- The canonical model captures the phenomenologies of the more complicated models [1-4], including limit cycles, arrested phase separation and droplet splitting.

Perspectives

▶ The limit cycle solution clearly breaks the time reversal symmetry, but it is hard to tell what is non-equilibrium about the steady state patterns \rightarrow need to look at fluctuations

References

- [1] Cates ME et al. 2010, PNAS, 107(26).
- [2] Grafke T et al. 2017, PRL, 119(18).
- [3] Weber C et al. 2019, Reports on Progress in Physics, 82(6).
- [4] Glotzer SC et al. 1995, PRL, 74(11).