

Non-equilibrium phase separation with chemical reactions

Yuting Li, Michael E. Cates Email: yl511@cam.ac.uk

DAMTP, Centre for Mathematical Sciences, University of Cambridge

Canonical model

A class of systems with conservative phase separation mechanisms as well as chemical reactions. Examples include

- \triangleright Self-propelled bacteria with birth-death dynamics [1,2]
- \triangleright Biomolecular condensates [3]
- \triangleright Chemically active bi-polymer blends [4]

Canonical model: Model B and Model A with different chemical potentials. Scalar field ϕ : rescaled density or composition variable.

$$
\partial_t \phi = M_1 \nabla^2 \mu_1 - M_2 \mu_2 + \Lambda
$$

\n
$$
\mu_1 = -\alpha \phi + \beta \phi^3 - \kappa \nabla^2 \phi
$$

\n
$$
\mu_2 = u(\phi - \phi_a)(\phi - \phi_t)
$$

\n
$$
\langle \Lambda(\mathbf{x}, t) \Lambda(\mathbf{y}, s) \rangle = 2\epsilon \left[-M_1 \nabla_x \nabla_y + M_2 \right] \delta^3(\mathbf{x} - \mathbf{y}) \delta(t - s)
$$

Conservative dynamics:

Double-well free energy with two stable binodals **Non-conservative dynamics:** Cubic free energy with one stable fixed point at target density ϕ_t Absorbing state at $\phi = \phi_a$ but far away

Steady state solution: arrested phase separation

Linear stability analysis

 ϵ Expand $\phi(\boldsymbol{x}) = \phi_{\mathrm{t}} + \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \delta \phi(\boldsymbol{q}) e^{-i \boldsymbol{q} \cdot \boldsymbol{x}}$, $\partial_t \phi_q = \left[\left(\frac{\tilde{\alpha}^2}{4 \kappa} - u \right) - \kappa (q^2 - q_c^2)^2 \right] \phi_q$

where $\tilde{\alpha} = \alpha - 3\beta \phi_{\rm t}^2$, and $q_c = \sqrt{\tilde{\alpha}/2\kappa}$. \rightarrow Uniform state unstable for $\tilde{\alpha} > \sqrt{4u\kappa}$.

Close to the pattern formation threshold

Arrested Ostwald ripening of droplets

 $\phi(x) \sim \Delta^{1/2} \cos(q_c x)$

Balance flux across the boundary of a droplet in a bath to obtain growth rate of the radius

- \triangleright Unstable fixed point: the usual Ostwald ripening radius - smaller droplets shrink
- \triangleright Stable fixed point: stable radius of a droplet

0*.*04 0*.*03 0*.*02

ದ *Rt*

Limit cycle solution

When reaction is slow compared to diffusion,

Figure: The same limit cycle projected onto $(\partial_t \bar{\phi}, \bar{\phi})$ where $\bar{\phi}(t) = \int dx \phi(x, t)$. The slow manifold is the steady state solution of the conservative part of the dynamics given $\bar{\phi}$.

Figure: Space-time plot of a limit cycle where a dense droplet appears and disappears over time.

Conditions for the cycles to occur

- \triangleright Droplet state: enough decrease in the droplet to offset the production in the dilute region, i.e. effective target density close to the binodal
- \blacktriangleright Uniform state: ϕ_t within the spinodals so the uniform state becomes unstable before ϕ_t is reached.

Hysteresis structure essential for limit cycles to occur

Droplet splitting

Spherical droplets are sometimes unstable against shape perturbations

 \triangleright Ostwald ripening type calculation for perturbations around a spherical droplet $R(\theta) = \bar{R} + \sum \delta R_l \cos(l\theta)$

l

Conclusions and perspectives

Conclusions

 $\partial_t \delta R_l = g_l\left(\tilde{\bar{R}}\right)$

- \blacktriangleright We constructed a canonical model for conservative phase separation and chemical reactions.
- \blacktriangleright The canonical model captures the phenomenologies of the more complicated models [1-4], including limit cycles, arrested phase separation and droplet splitting.

Perspectives

 \blacktriangleright The limit cycle solution clearly breaks the time reversal symmetry, but it is hard to tell what is non-equilibrium about the steady state patterns \rightarrow need to look at fluctuations

References

- [1] Cates ME et al. 2010, PNAS, 107(26).
- [2] Grafke T et al. 2017, PRL, 119(18).
- [3] Weber C et al. 2019, Reports on Progress in Physics, 82(6).
- [4] Glotzer SC et al. 1995, PRL, 74(11).